MÖSSBAUER SPECTROSCOPY

PRINCIPLES AND APPLICATIONS

V.SANTHANAM DEPARTMENT OF CHEMJSTRY SESVMV

When ever a high energy particle/projectile is released from a body at rest, the releasing body feels a back-kick i.e. it is pushed backwards, which is called recoil effect. This is true for absorption of high energy particles also. The recoil happens to conserve the momentum.

$$E_R = P^2/2m = E^2/2MC^2$$
$$= (E_t - E_R)^2/2MC^2 \approx E_t/2MC^2$$
Since E_R is small
• If M increases the recoil energy can be still
lower. So the source and the absorber are
fixed on a larger lattice to increase mass

- It is already known that, for spectroscopic technique we need a monochromatic radiation.
- But gamma rays are coming out because of the energy difference between the nuclear levels.
- We cannot alter it, to change the gamma photon's energy.
- So we use Doppler effect to change the energy of the photon.

.....Conditions continued....

- The lifetime of the excited state must be long enough give a reasonably broad emission range. Since, extremely narrow lines are not useful (τ must be 001 – 100 nS)
- The excited state of the emitter should be having a long-lived precursor, and easy to handle.

.....Conditions continued....

- The ground state of the isotope should be stable. Its natural abundance should be high or at least the enrichment of that isotope should be easy.
- The cross section of for absorption should be high.

12

• A *constant frequency clock* synchronises a voltage waveform which serves as a reference signal to the servo-amplifier controlling the electro-mechanical vibrator.

- The difference between the monitored signal and the reference signal is amplified and drives the vibrator at the same frequency (typically 50 s⁻¹) as the channel address advance.
- Each channel corresponds to a certain relative velocity and is held open for a fixed time interval depending on the frequency and number of channels used.

- The cryostat can be furnished with a superconducting solenoid for measuring the sample in an applied magnetic field.
- It is also possible to mount a pressure cell inside the cryostat for studying the sample properties under pressure.

- Generally Sn(II) compounds show shift > than 2.1 mmS⁻¹ and Sn(IV) show shift < 2.1 mmS⁻¹ (With relative to SnO₂)
- The point of changeover is a dispute but shifts less than 2 are for Sn(IV) and above 2.5 are clearly for Sn(II)

Organotin compounds

- The isomer shift of $(SnPh_2)_n$ is 1.5 mm/S clearly showing the presence of Sn(IV).
- A similar formula $Sn(C_5H_3)_2$ is having a monomeric structure in the solid state and shows a shift of 3.74 mm/S.

Chemical shift values for Fe compounds

- Fe isomer shift cannot be used for determining the O.S of Fe in a molecule.
- Fe O.S from 0 to 4, often differ in unit charge only.
- The electrons involved are from d orbital. So effect on the s electrons is smaller.
- Varying spin states(which depends on the ligands present) also affect the shift value.

- Fe-porphyrin complexes are very important biologically.
- Fe can be present in +2 or +3 state in them.
- The complexes can be easily reduced. The electron may be to the Fe or to the ligand. In that ambiguous case MB spectra is useful in determining the O.S

Electric Quadruple Interactions

- Nuclei in states with an angular momentum quantum number I>1/2 have a non-spherical charge distribution. This produces a nuclear quadruple moment.
- In the presence of an asymmetrical electric field (produced by an asymmetric electronic charge distribution or ligand arrangement) this splits the nuclear energy levels.
- The charge distribution is characterized by a single quantity called the Electric Field Gradient (EFG).

Stereochemical activity of lone pair

- Consider Te(IV) compounds with six ligands
- If the lone pair of electron of Te is stereochemically active , it will occupy one vertex of a pentagonal bipyramide(*pbp*)
- This will create an efg at the nucleus, resulting in q.s
- But no q.s in these class of compounds.
- So the lone pair is stereochemically inactive
- It occupies the 5s orbital

- In the presence of a magnetic field the nuclear spin moment experiences a dipolar interaction with the magnetic field ie Zeeman splitting
- There are many sources of magnetic fields that can be experienced by the nucleus.
- The total effective magnetic field at the nucleus, B_{eff} is given by

 $B_{eff} = (B_{contact} + B_{orbital} + B_{dipolar}) + B_{applied}$

- In weak field created by H₂O, an orbitally degenerate system results.
- This under goes J-T distortion (Z _{in})to remove the degeneracy and forms a tetragonal field.
- This creates an *efg* at the nucleus and hence quadruple splitting.
- The structure assigned is an distorted O_h with all angles 90° and x ≠ y ≠ z

- For a long time one had considered them as chemically different compounds.
- Prussian Blue with [Fe^{II}(CN)₆]⁴⁻ anions and Turnbull's Blue with [Fe^{III}(CN)₆]³⁻ anions, according to the different way of preparing them.
- However, the Mössbauer spectra recorded by Fluck et al., were nearly identical for both PB and TB showing only the presence of [Fe^{II}(CN)₆]⁴⁻ and Fe³⁺ in the high spin state.

- This could be confirmed by use of K₄[Fe^{III}(CN)₆] and K₃[Fe^{III}(CN)₆] as reference compounds.
- Immediately after adding a solution of Fe²⁺ to a solution of [Fe^{III}(CN)₆]³⁻ a rapid electron transfer takes place from Fe²⁺ to the anion [Fe^{III}(CN)₆]³⁻ with subsequent precipitation of the same material.
- A singlet for Fe(III) and a quadruple doublet for Fe(II) were which confirmed Prussian blue and Turnbull's blue are identical

- The Fe(II) is transferring the e⁻s form filled t_2g level to the vacant π - antibonding orbital of NO.
- This makes the shift value to approach Fe(IV) values.
- Now because of this the shielding of s-e⁻ by the d e⁻s decreases and hence the shift becomes more.
- This is supported by the decrease in N-O stretching frequency in IR, since the anti bonding level is filled.

- Normalizing the isomer shifts to that of the pentacyanonitrosylferrate complex as zero point
- The ordering expresses the varying effects of d_{π^-} p_{π} back donation for the different sixth ligand X.
- The isomer shift values become more positive on going from NO^+ to H_2O

- Stronger shielding of s-electrons by delectrons, which finally creates lower selectron density at the nucleus.
- The nuclear factor $\Delta R/R$ is negative for ⁵⁷Fe explains the increasingly positive isomer shift values in the given sequence from NO⁺ to H₂O

Ferredoxin Study of ferredoxin, a Fe-S protein, which assists in *in-vivo* e⁻ transfer reactions The two-iron centres are not equivalent in the reduced form. The oxidized form with two Fe(III)-high spin centres can be distinguished from the reduced form with one Fe(III)-high spin centre and one Fe(II)-high spin centre only by using MB spectrum

